

www.dvgw-innovation.de

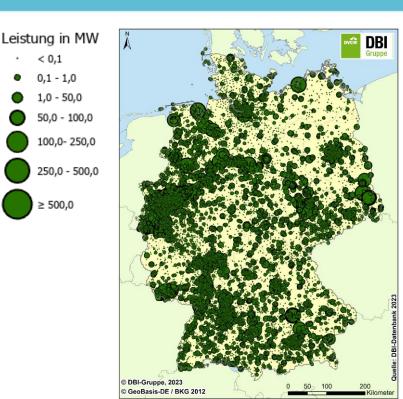
Kurzstudie: Analyse der Bedeutung des Gasnetzes für die Versorgung von Kraftwerken

DVGW F&E-Projekt G 202334

Gliederung

- 1. Analyse zum aktuellen Stand: "Kraftwerke in Deutschland"
- 2. Lageabgleich der Kraftwerke zum Erdgas- und H₂-Kernnetz
 - "1-km-Methodik"
 - "3-km-Methodik"
- 3. Theoretische Gasbedarfe und potenzielle Abwärme aus Kraftwerken (KWP)

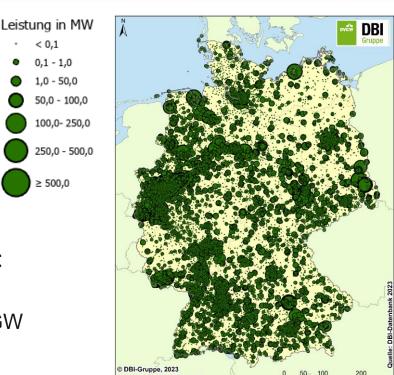
Ziel: Erfassung und regionale Klassifizierung von Kraftwerksarten und -größen


Methodik:

- betrachtete Kraftwerkstypen: BHKW, Gas-, Braun- und Steinkohlekraftwerke (Differenzierung: BHKW ≤ 5 MW, Gaskraftwerk > 5 MW)
- Erstellung eines einheitlichen Datensatzes aus Ergebnissen des DVGW-Projektes "Zukunft Fernwärme":
 - + Markstammdatenregister
 - + Kraftwerksliste Bundesnetzagentur
 - + DBI-Datenbank
 - → Datenstand 2023!

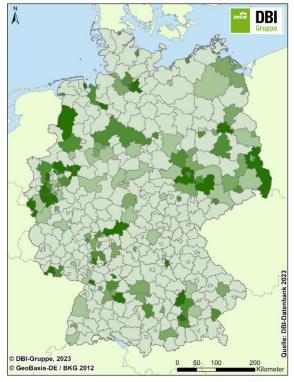
Ergebnis: standortgenaue Geodaten inkl. Leistungen und Inbetriebnahmedaten der Kraftwerke → Erstellung von aussagekräftigem Kartenmaterial

Analyse aktueller Anlagenbestand in Deutschland:


- mehr als 70.000 Anlagenstandorte (einzelne Anlagen und teilweise Kraftwerksblöcke)
 - 69.615 BHKWs (erdgasbetrieben, Biogas-BHKWs sind ausgeklammert!)
 - 689 Gaskraftwerke
 - 71 Braunkohlekraftwerke, bzw. Blöcke
 - 84 Steinkohlekraftwerke, bzw. Blöcke

Analyse aktueller Anlagenbestand in Deutschland:

- identifizierte Cluster in Deutschland:
 v.a. im Westen, Osten sowie Südwesten
- gesamt ca. 82 GW installierte <u>elektr.</u> Leistung
- 97 % der Anlagen mit Leistung < 1 MW (BHKW)
- Verteilung der installierten <u>elektrischen</u> Leistung:
 - BHKW (Leistungsklasse ≤ 5 MW) : 5 GW
 - Gaskraftwerke (Leistungsklasse > 5 MW): 33 GW
 - Braunkohlekraftwerke: 20 GW
 - Steinkohlekraftwerke: 24 GW


Analyse der aktuell installierten elektr. Leistung in Deutschland auf Landkreisebene:

- Summierung der installierten elektr. Leistung
- hohe Leistungen in Teilen von NRW, Niedersachsen und Lausitz sowie Mitteldeutschland
- kein Landkreis ohne installierte elektrische Leistung vorhanden

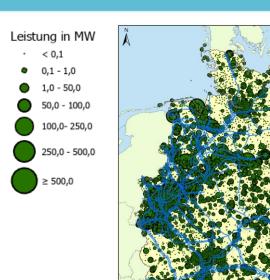
Fazit: hohe Gesamtleistungen in Landkreisen mit

Kohlekraftwerken

"1-km-Methodik"

Ziel: Kategorisierung der Kraftwerke in Entfernungsklassen zum Gasnetz

Methodik:


- Basis: FNB Gas e.V., Basiskarte 2022 [1]
- Annahmen zur Zuordnung:
 - Fernleitungsnetz: Kraftwerke in Entfernung ≤ 1 km
 - Verteilnetz: Kraftwerke ab Entfernung > 1 km
- Potenziell zukünftige Versorgung von Kohlekraftwerken mit Gas wird ebenfalls berücksichtigt (siehe DVGW-Projekt "Zukunft Fernwärme")

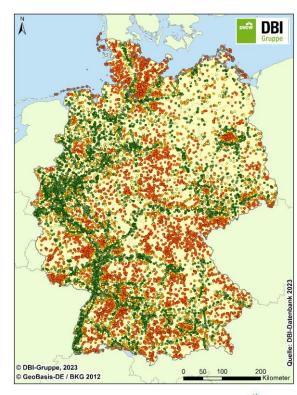
Ergebnis: standortgenaue Zuordnung, ob Kraftwerk tendenziell in Nähe von Fernleitungs- oder Verteilnetz ist

Abgleich Fernleitungsnetz [1] mit Kraftwerksleistung:

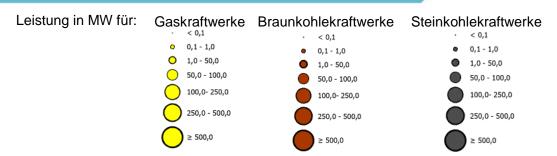
- Darstellung aller Kraftwerksleistungen und Fernleitungsnetz
- → wichtig: alle Landkreise sind grundsätzlich erdgasversorgt (Verteilnetz) [2]

GeoBasis-DE / BKG 2012

DBI

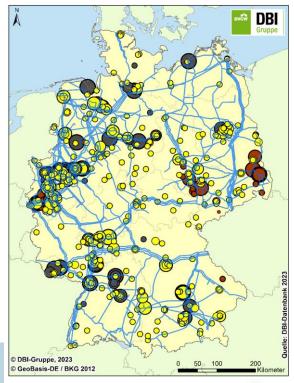

Standortanalyse der Anlagen innerhalb einer Entfernungsklasse für das Erdgasnetz (Braun- und Steinkohle, Gas, BHKWs)

- ca. 17 % aller Anlagenstandorte in Entfernung
 ≤ 1 km vom Fernleitungsnetz
- ca. 83 % aller Anlagenstandorte in Entfernung
 1 km vom Fernleitungsnetz

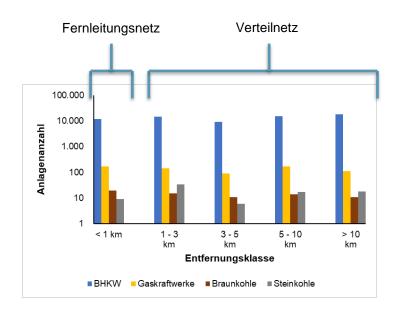

Fazit: ca. 83 % aller Kraftwerksstandorte liegen im Bereich des Verteilnetzes

Entfernung in km

- - 1-3
 - 3 5
 - 5-10
 - ≥ 10

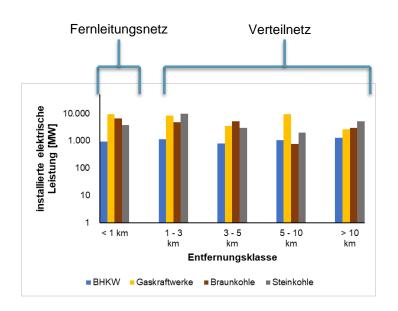


Abgleich Fernleitungsnetz [1] mit Kraftwerksstandorten:


- Darstellung von Gas-, Braunkohle- und Steinkohlekraftwerken und Fernleitungsnetz
- → Wichtig: alle Landkreise sind grundsätzlich erdgasversorgt (Verteilnetz) [2]

Fazit: ca. 19 GW in Nähe zum Fernleitungsnetz (ca. 25 %), ca. 58 GW im Bereich des Verteilnetzes (ca. 75 %)

Anzahl der Anlagen innerhalb einer Entfernungsklasse für das Erdgasnetz



Entfernungs- klasse	Entfernung	Gesamtanzahl
Klasse 1	< 1 km	11.941
Klasse 2	1-3 km	14.953
Klasse 3	3-5 km	9.536
Klasse 4	5-10 km	15.305
Klasse 5	> 10 km	18.724

Fazit: ca. 83 % aller Kraftwerksstandorte liegen im Bereich des Verteilnetzes

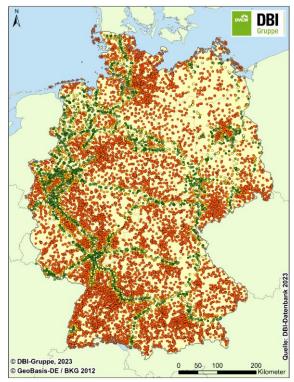
Installierte elektrische Leistung der Anlagen innerhalb einer Entfernungsklasse

Entfernungs- klasse	Entfernung	inst. elektr. Leistung [MW]
Klasse 1	< 1 km	20.653
Klasse 2	1-3 km	24.313
Klasse 3	3-5 km	12.502
Klasse 4	5-10 km	13.207
Klasse 5	> 10 km	12.132

Fazit: ca. 62 GW im Bereich des Verteilnetzes (ca. 76 %)

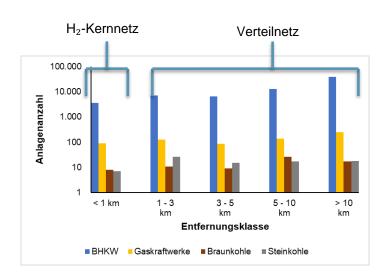
Verlauf des H₂-Kernnetz [1]

- Basis: FNB Gas e.V., Entwurf zu H₂-Kernnetz vom 15.11.2023
- Commitment der FNB ist vorhanden
 - Energiewirtschaftsgesetz (EnWG) muss vor Verabschiedung geändert werden (Ziel 01/2024)
 - Genehmigung durch BNetzA erst möglich, wenn EnWG novelliert
- → Plan: Umstellung von Erdgasleitungen (ca. 60 %) und Neubau
- Zieljahr des Ausbaus: 2032


Anzahl der Anlagen innerhalb einer Entfernungsklasse für das H₂-Kernnetz bis 2032

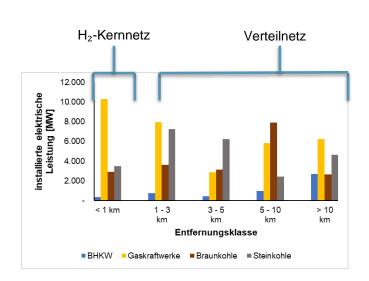
- ca. 10 % aller Anlagenstandorte in Entfernung
 ≤ 1 km vom H₂-Kernnetz
- ca. 90 % aller Anlagenstandorte in Entfernung
 1 km vom H₂-Kernnetz

Fazit: ca. 90 % aller Anlagen müssten ans H₂-Verteilnetz angeschlossen werden


Entfernung in km

- <
- 1 3
- · 3 5
- 5 -10
- ≥ 10

Anzahl der Anlagen innerhalb einer Entfernungsklasse für das H₂-Kernnetz bis 2032



Entfernungs- klasse	Entfernung	Gesamtanzahl
Klasse 1	< 1 km	3.676
Klasse 2	1-3 km	7.211
Klasse 3	3-5 km	6.757
Klasse 4	5-10 km	13.358
Klasse 5	> 10 km	39.457

Fazit: ca. 90 % aller Kraftwerksstandorte liegen im Bereich des H₂-Verteilnetzes

Installierte elektrische Leistung der Anlagen innerhalb einer Entfernungsklasse zum H₂-Kernnetz

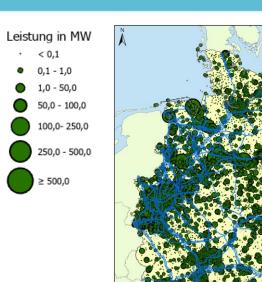
Entfernungs- klasse	Entfernung	inst. elektr. Leistung [MW]
Klasse 1	< 1 km	17.090
Klasse 2	1-3 km	19.625
Klasse 3	3-5 km	12.698
Klasse 4	5-10 km	17.164
Klasse 5	> 10 km	16.228

Fazit: ca. 65 GW im Bereich des H₂-Verteilnetzes (ca. 80 %)

"3-km-Methodik"

Ziel: Kategorisierung der Kraftwerke in Entfernungsklassen zum Gasnetz

Methodik:


- Basis: FNB Gas e.V., Basiskarte 2022 [1]
- Annahmen zur Zuordnung:
 - Fernleitungsnetz: Kraftwerke in Entfernung ≤ 3 km
 - Verteilnetz: Kraftwerke ab Entfernung > 3 km
- Potenziell zukünftige Versorgung von Kohlekraftwerken mit Gas wird ebenfalls berücksichtigt (siehe DVGW-Projekt "Zukunft Fernwärme")

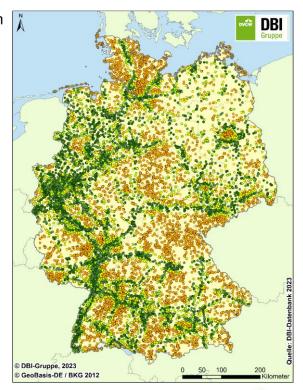
Ergebnis: standortgenaue Zuordnung, ob Kraftwerk tendenziell in Nähe von Fernleitungs- oder Verteilnetz ist

Abgleich Fernleitungsnetz [1] mit Kraftwerksleistung:

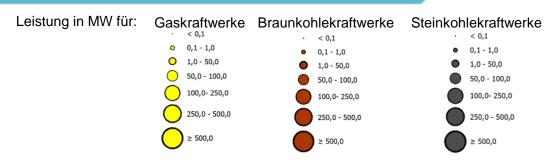
- Darstellung aller Kraftwerksleistungen und Fernleitungsnetz
- → wichtig: alle Landkreise sind grundsätzlich erdgasversorgt (Verteilnetz) [2]

GeoBasis-DE / BKG 2012

DBI

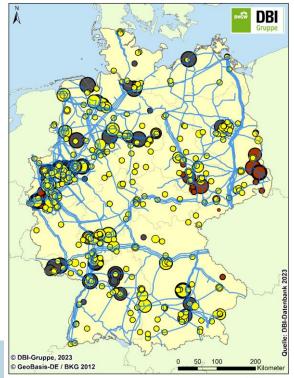

Standortanalyse der Anlagen innerhalb einer Entfernungsklasse für das Erdgasnetz (Braun- und Steinkohle, Gas, BHKWs)

- ca. 38 % aller Anlagenstandorte in Entfernung
 ≤ 3 km vom Fernleitungsnetz
- ca. 62 % aller Anlagenstandorte in Entfernung
 > 3 km vom Fernleitungsnetz


Fazit: ca. 62 % aller Kraftwerksstandorte liegen im Bereich des Verteilnetzes

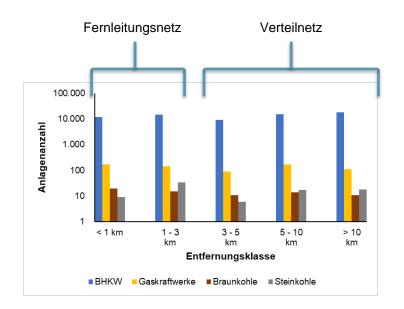
Entfernung in km

- <
- 1-
- 3 5
- 5 10
- > 10



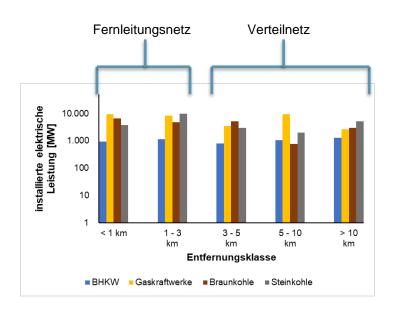
Abgleich Fernleitungsnetz [1] mit Kraftwerksstandorten:

- Darstellung von Gas-, Braunkohle- und Steinkohlekraftwerken und Fernleitungsnetz (ohne BHKW)
- → Wichtig: alle Landkreise sind grundsätzlich erdgasversorgt (Verteilnetz) [2]


Fazit: ca. 42 GW in Nähe zum Fernleitungsnetz (ca. 55 %),

ca. 35 GW im Bereich des Verteilnetzes (ca. 45 %)

Anzahl der Anlagen innerhalb einer Entfernungsklasse für das Erdgasnetz



Entfernungs- klasse	Entfernung	Gesamtanzahl
Klasse 1	< 1 km	11.941
Klasse 2	1-3 km	14.953
Klasse 3	3-5 km	9.536
Klasse 4	5-10 km	15.305
Klasse 5	> 10 km	18.724

Fazit: ca. 62 % aller Kraftwerksstandorte liegen im Bereich des Verteilnetzes

Installierte elektrische Leistung der Anlagen innerhalb einer Entfernungsklasse

Entfernungs- klasse	Entfernung	inst. elektr. Leistung [MW]
Klasse 1	< 1 km	20.653
Klasse 2	1-3 km	24.313
Klasse 3	3-5 km	12.502
Klasse 4	5-10 km	13.207
Klasse 5	> 10 km	12.132

Fazit: ca. 38 GW im Bereich des Verteilnetzes (ca. 46 %)

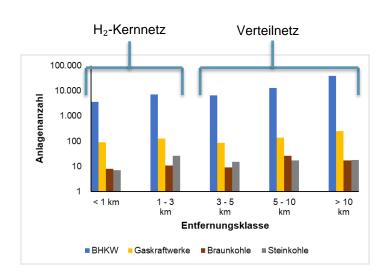
Verlauf des H₂-Kernnetz [1]

- Basis: FNB Gas e.V., Entwurf zu H₂-Kernnetz vom 15.11.2023
- Commitment der FNB ist vorhanden
 - Energiewirtschaftsgesetz (EnWG) muss vor Verabschiedung geändert werden (Ziel 01/2024)
 - Genehmigung durch BNetzA erst möglich, wenn EnWG novelliert
- → Plan: Umstellung von Erdgasleitungen (ca. 60 %) und Neubau
- Zieljahr des Ausbaus: 2032

Anzahl der Anlagen innerhalb einer Entfernungsklasse für das H₂-Kernnetz bis 2032

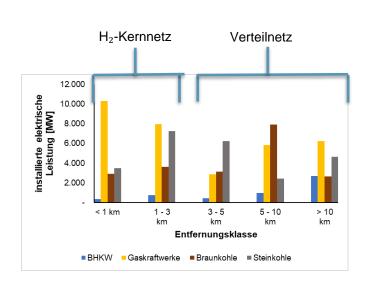
- ca. 15 % aller Anlagenstandorte in Entfernung ≤ 3 km vom H₂-Kernnetz
- ca. 85 % aller Anlagenstandorte in Entfernung > 3 km vom H₂-Kernnetz

Fazit: ca. 85 % aller Anlagen müssten ans H₂-Verteilnetz angeschlossen werden


Entfernung in km

- > 10

Anzahl der Anlagen innerhalb einer Entfernungsklasse für das H₂-Kernnetz bis 2032



Entfernungs- klasse	Entfernung	Gesamtanzahl
Klasse 1	< 1 km	3.676
Klasse 2	1-3 km	7.211
Klasse 3	3-5 km	6.757
Klasse 4	5-10 km	13.358
Klasse 5	> 10 km	39.457

ca. 85 % aller Kraftwerksstandorte liegen im Bereich des H₂-Verteilnetzes **Fazit:**

Installierte elektrische Leistung der Anlagen innerhalb einer Entfernungsklasse zum H₂-Kernnetz

Entfernungs- klasse	Entfernung	inst. elektr. Leistung [MW]
Klasse 1	< 1 km	17.090
Klasse 2	1-3 km	19.625
Klasse 3	3-5 km	12.698
Klasse 4	5-10 km	17.164
Klasse 5	> 10 km	16.228

Fazit: ca. 46 GW im Bereich des H₂-Verteilnetzes (ca. 56 %)

Ergebnisse aus DVGW-Projekt "Zukunft Fernwärme"

Braunkohle Steinkohle · 0,00 - 0,30 0,00 - 0,30 0.30 - 0.60• 0,30 - 0,60 0.60 - 1.00 • 0,60 - 1,00 1,00 - 2,30 **1.00 - 2.30**

aktuelle Wärmeerzeugung in KWK-basierten Kohlekraftwerken in TWh/a

		Anzahl Blöcke	Inst. Therm. Leistung [GW]	Wärmeaus- kopplung [TWh/a]
Mit Wärmeaus- kopplung	Braunkohle	58	3,3	13,3
	Steinkohle	74	13,7	31,9
Sum	nme	132	17,0	45,2

Fazit: bei Abschaltung der Kohlekraftwerke werden mehr als

45 TWh/a für die leitungsgebundene Wärmeversorgung fehlen

Ziel: Modellierung Gasbedarfe (Erdgas und H₂) sowie Abwärmepotenziale auf Landkreisebene

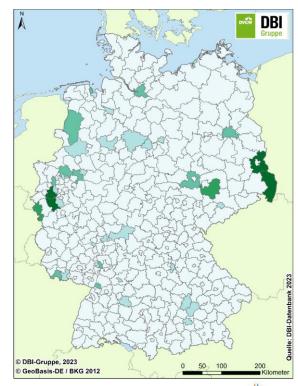
Methodik:

- Annahme:
 - Fernleitungsnetz: Kraftwerke in Entfernung ≤ 1 km
 - Verteilnetz: Kraftwerke ab Entfernung > 1 km
- potenziell zukünftige Versorgung von Kohlekraftwerken mit Erdgas bzw. H₂ wird ebenfalls berücksichtigt (siehe DVGW-Projekt Zukunft Fernwärme)
- Abgleich der Gasbedarfe mittels Strommix 2022
- landkreisgenaue Ermittlung potenzieller Abwärmemengen sowie Deckungsgradbestimmung im Vergleich mit aktuellen Wärmebedarfen im Gebäudesektor (DBI-Wärmeatlas)

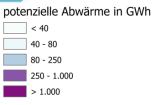
Ergebnis:

- landkreisgenaue Zuordnung, wieviel Erdgas bzw. H₂ je Kraftwerk benötigt wird/ werden könnte
- Wärmedeckungsgrad auf Basis potenzieller Abwärmemengen im Gebäudesektor

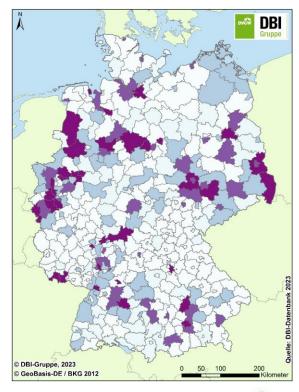
Aktueller Strommix 2023:



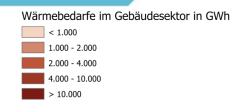
Analyse der Gasbedarfe für Kraftwerken in Deutschland auf Landkreisebene, Abgleich mit Strommix:



- in Summe ca. 374 TWh an Gasbedarf vorhanden
 - BHKW: 24 TWh
 - Gaskraftwerke: 90,4 TWh
 - Ehemalige Braunkohlekraftwerke*: 157 TWh
 - Ehemalige Steinkohlekraftwerke*: 103 TWh

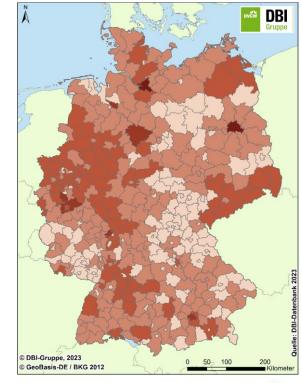


^{*}Gasturbine mit nachgeschalteter Dampfturbine

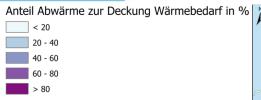

Analyse potenzielle Abwärmemengen aus allen Kraftwerken in Deutschland auf Landkreisebene:

- Annahme Methodik Zukunft Fernwärme: Umstellung Kohlekraftwerke auf Gas
- in Summe ca. 170 TWh an potenzieller Abwärme vorhanden, v.a. in Mitte Deutschlands
 - BHKW: ca. 14 TWh
 - Gaskraftwerke: ca. 49 TWh
 - Braunkohlekraftwerke: 70 TWh
 - Steinkohlekraftwerke: 37 TWh

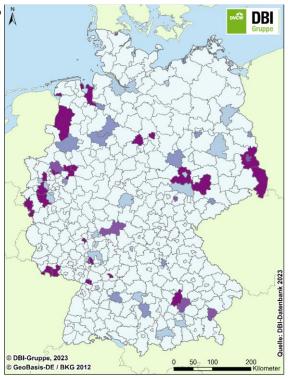
Fazit: großer Anteil potenzieller Abwärmemengen aus ehemaligen Kohlekraftwerken



Wärmebedarfe im Gebäudesektor auf Landkreisebene


- hohe Bedarfe v.a. im Großstädten sowie im Westen und Osten Deutschlands
- in Summe Wärmebedarf von 627 TWh

Fazit: Deutschlands Wärmebedarf mittels potenzieller Abwärmemengen zu 27 % bilanziell abdeckbar


Gasbedarfe und potenzielle Abwärme aus Kraftwerken (KWP)

Prozentualer Anteil der Abwärme zur Deckung der Wärmebedarfe auf Landkreisebene

- Großteil der Landkreise (ca. 83%) mit Abdeckung < 20 %
- ca. 6 % der Landkreise mit Abdeckung > 80 %
- → v.a. in Landkreisen mit aktuellen Gas- und Kohlekraftwerken

Fazit: regionale Prüfung der Nutzung von Abwärme zur leitungsgebundenen Wärmeversorgung essentiell

Kurzstudie: Analyse der Bedeutung des Gasnetzes für die Versorgung von Kraftwerken

Autoren:

Patrick Heinrich, Elisabeth Grube, Nico Steyer, Florian Lehnert, Robert Manig

